If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+32x-64=0.
a = 8; b = 32; c = -64;
Δ = b2-4ac
Δ = 322-4·8·(-64)
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32\sqrt{3}}{2*8}=\frac{-32-32\sqrt{3}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32\sqrt{3}}{2*8}=\frac{-32+32\sqrt{3}}{16} $
| -3*(2-x)=x-2 | | (5x+2)*(x+2)=7 | | x=140÷7 | | 6-6j=5j-9j-9 | | 6-4c+2=-2c-10 | | 2*(3x-6)=20-2x | | 2y-10=2y-3y+8 | | k/19=-12/19 | | 6-6x=5x-9x-9 | | $$3x+7=13 | | -3.5(x-4)=8.4x+87.78 | | 10v-9-3=7v+9 | | F(x)=-5-5-7 | | 1.60g=32 | | 3r-3=2r-10 | | 10(y-7)=30 | | 7x-17=-5x+9 | | 10-q+10=-8q-8 | | F(x)=-8-2-13 | | 19e+7e=90+66 | | x/6=19/6 | | -1.36=14+x/6 | | x/6=19/9 | | a/19=-2 | | -4(x-2)+5=13 | | |d-6|+5=-2 | | -7y+26=4.4 | | (1/4-a/2)+(-5a+1/2)=a-2,5 | | -7h+8-7h=-4-10h | | -9n=126 | | -8g-6=-10g+9 | | y=4/5y-1 |